Hopf Bifurcation From Viscous Shock Waves

نویسندگان

  • Björn Sandstede
  • Arnd Scheel
چکیده

Using spatial dynamics, we prove a Hopf bifurcation theorem for viscous Lax shocks in viscous conservation laws. The bifurcating viscous shocks are unique (up to time and space translation), exponentially localized in space, periodic in time, and their speed satisfies the Rankine–Hugoniot condition. We also prove an ”exchange of spectral stability” result for superand subcritical bifurcations, and outline how our proofs can be extended to cover degenerate, over-, and undercompressive viscous shocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of detonation profiles in the ZND limit

Confirming a conjecture of Lyng–Raoofi–Texier–Zumbrun, we show that stability of strong detonation waves in the ZND, or small-viscosity, limit is equivalent to stability of the limiting ZND detonation together with stability of the viscous profile associated with the component Neumann shock. More, on bounded frequencies the nonstable eigenvalues of the viscous detonation wave converge to those ...

متن کامل

Hopf bifurcation of viscous shock waves in compressible gas- and magnetohydrodynamics

Extending our previous results for artificial viscosity systems, we show, under suitable spectral hypotheses, that shock wave solutions of compressible Navier–Stokes (cNS) and magnetohydrodynamics (MHD) equations undergo Hopf bifurcation to nearby time-periodic solutions. The main new difficulty associated with physical viscosity and the corresponding absence of parabolic smoothing is the need ...

متن کامل

Generic Hopf Bifurcation From Lines of Equilibria Without Parameters: II. Systems of Viscous Hyperbolic Balance Laws

We investigate viscous shock profiles of the Riemann problem for systems of hyperbolic balance laws. Even strictly hyperbolic flux terms together with a nonoscillating kinetic part can lead to oscillating viscous shock profiles. They appear near a Hopf-like bifurcation point of the traveling wave equation.

متن کامل

Nonlinear stability of time-periodic viscous shocks

In order to understand the nonlinear stability of many types of time-periodic travelling waves on unbounded domains, one must overcome two main difficulties: the presence of embedded neutral eigenvalues and the time-dependence of the associated linear operator. This problem is studied in the context of timeperiodic Lax shocks in systems of viscous conservation laws. Using spatial dynamics and a...

متن کامل

Galloping instability of viscous shock waves

Motivated by physical and numerical observations of time oscillatory “galloping”, “spinning”, and “cellular” instabilities of detonation waves, we study Poincaré–Hopf bifurcation of traveling-wave solutions of viscous conservation laws. The main difficulty is the absence of a spectral gap between oscillatory modes and essential spectrum, preventing standard reduction to a finite-dimensional cen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2008